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Introduction

Applications for Voronoi mesh generation are numerous: automatic construc-
tion of finite volumes for mesh-free numerical methods [8, 3]; robust mesh
structures for models spanning multiple spatial scales in astrophysical hy-
drodynamics, geophysical flows, and fluid dynamics [2, 8, 3]; convex mesh
elements for particle tracking and transport methods; and visualization of
discrete, spatially-distributed data.

This article outlines a new platform for computing Voronoi and Voronoi-
like meshes in a robust and e�cient manner from both shared and distributed
input data. Polytope [12] is open-source software designed to provide a uni-
form interface to several underlying packages for computing Voronoi and De-
launay tessellations. A code using Polytope can experiment with many di↵er-
ent tessellation libraries through a single interface, without having to adapt
to each package’s unique interface and data structures. The code performs
internal operations using integers for computational robustness and respects
the floating point precision specified by the user. Most importantly, the inter-
face is parallel: Polytope provides a communication layer to serial tessellation
packages to transform distributed input points into consistent unstructured
mesh data.

Polytope supports unbounded meshes in 2D and 3D and bounded meshes
in 2D. A clipping algorithm is used to generate boundary-conformal meshes
that can handle complicated geometries, including non-convex boundaries
containing holes. The capability to generate three-dimensional bounded meshes
is forthcoming.
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Fig. 1. Unbounded Voronoi cells before clipping (left); orphaned cell created by
clipping (center); neighboring cell “adopts” orphan based on VSP principle (right).

1 The Serial Algorithm

Polytope currently interfaces direct Voronoi libraries: Voro++ [4] and the
Voronoi capabilities in Boost.Polygon [10]; and Delaunay solvers: Triangle [5]
and Tetgen [7]. Polytope builds unstructured mesh data from the topology of
computed Voronoi and Delaunay diagrams. For Delaunay diagrams, Polytope
constructs the Voronoi dual internally to exact floating point precision using
Shewchuk’s predicates [6].

Mesh cells are initially unbounded and may contain infinite edges. If
boundary data is supplied, the unbounded mesh is clipped, in the spirit of
[11] to form a boundary-conformal elements. Pertinent aspects include:

Cell Clipping

Polytope’s clipping algorithm computes polygon-polygon intersections using
the C++ computational geometry library Boost.Geometry [1]. Each cell from
the computed Voronoi diagram is stored as a Boost polygon and intersected
with the faceted input boundary. Intersections are performed using integers
to handle degenerate cases in a robust and reliable manner.

Orphaned Cells

Intersecting a Voronoi cell with a non-convex boundary is not guaranteed to
return a single polygon, especially if generator density is low local to a non-
convex feature or hole. (See Figure 1.) One polygon will contain the original
generator and become the new boundary-conformal mesh cell. The remaining
polygons are orphaned by the parent Voronoi cell and must be accounted for.
Polytope redistributes the area occupied by orphaned cells to neighboring cells
by constructing sub-tessellations from neighboring generator data.

Degenerate Mesh Nodes

Voronoi mesh generation tools are often plagued by the existence of degenerate
states. Failure to recognize degenerate Voronoi vertices can result in undesir-
ably small edges and inconsistent mesh topologies. Polytope maps floating
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point vertex data to an integer grid having a user-defined minimum length
scale. Vertices within one grid spacing of one another are merged, and the
topology of the underlying Voronoi diagram is updated accordingly.

2 The Parallel Algorithm

Polytope provides an MPI communication layer around serial tessellation li-
braries to handle distributed input data. The parallel algorithm established
communication between spatially-distributed (and not necessarily disjoint)
domains. Generator data is communicated with neighbor domains such that
the local mesh on each compute core is consistent with the global set.

The details of the parallel algorithm are beyond the scope of this article
(see [9]). It has been rigorously tested in 2D with robust scaling up to tens
of millions of input points distributed across 256 processors. Initial tests on
parallel e�ciency are favorable. Optimization of the algorithm is forthcoming.

3 Results

Some Example Boundaries

Figure 2 gives a collection of complicated 2D example boundaries. In most
cases, 2000 random generator positions are distributed across 36 processors.
Color changes indicate domain boundaries. The parallel algorithm respects
non-convex regions. Mesh topology is consistent across domain boundaries.

Centroidal Relaxation of a Mesh

Polytope’s parallel capabilities improve the e�ciency of iterative mesh op-
timization schemes such as Lloyd’s algorithm. Figure 3 demonstrates 1000
iterations of Lloyd’s algorithm on 4000 generators, randomly distributed onto
a toroidal boundary, and decomposed onto 20 processors.

Cosmological Dataset

Automatic mesh generation is complicated by the existence of multiple spatial
scales. Figure 4 demonstrates a mesh of more than 2 million generators. Point
density varies over 5 orders of magnitude. Generators correspond to point
masses taken from an astrophysical simulation of cosmological-scale structure
growth. Polytope took 89 seconds to compute the mesh on 64 processors.
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Fig. 2. Distributed meshes computed on a collection of complicated boundaries.

Fig. 3. Log condition number before and after 1000 iterations of Lloyd’s algorithm.
Zoom in of the relaxed mesh showing domain decomposition (right).
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Fig. 4. Mesh cells colored by log of area. Zooming in by factors of 10 on a high-
density region of the global mesh.
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